

Yasuhiro Nakajima (Kyoto Univ.) for the SciBooNE collaboration

April 12th, 2008 APS08 Meeting at St. Louis, MO

Overview

- **►** Motivation
- CC event selection
- Primary muon analysis
- Summary

Motivation

- Neutrino spectrum/flux measurements with small systematic uncertainties.
 - Very pure v_{μ} CC sample by identifying muon.
 - Reconstruct neutrino energy from muon kinematics.
- Essential for any other exclusive cross-section measurements.
 - Short-baseline neutrino oscillation search with MiniBooNE.

MiniBooNE+SciBooNE ν_μ disappearance search

- -Sharing the beam line
- -Same target: (SB: CH, MB: CH₂)

CC event selection (1)

- Assume the longest track as muon track.
- Require the vertex is in SciBar FV(10 tons)

Track reaching to MRD

MRD-matched event
Define data/MC normalization

Track endpoint contained in MRD

MRD-stopped event
Used for momentum reconstruction

~96% pure CC sample

CC event selection (2)

- 2 µsec beam timing window.
 - Less than 0.5% cosmic background contamination.
- 7.67E19 POT (77% of collected) used for this analysis.
- 24K MRD-matched events.
- 17K MRD-stopped events.

Vertex distribution

- SciBar-MRD matched event (Used for data/MC normalization)
- Data agrees with MC well.

Muon reconstruction

- Get muon angle w.r.t. the beam axis (θ_μ) from track direction in SciBar.
 - $\sigma(\theta) \sim 1.5 \text{ deg.}$
- Reconstruct muon momentum (P_µ) with the track path-length.
 - σ(P) ~ 50MeV/c(for P ~ 0.8GeV/c)
- E_ν and Q² can be reconstructed by θ_μ and P_μ only. (assuming CC Quasi-Elastic (QE) interaction)

$$E_{\nu} = \frac{m_p^2 - (m_n - V)^2 - m_{\mu}^2 + 2(m_n - V)E_{\mu}}{2(m_n - V - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

$$q^{2} = 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^{2}$$

θ_{μ} , P_{μ} distribution

MRD stopped sample (normalization: SciBar-MRD matched sample)

Reconstructed E_v, Q²

MRD stopped sample (normalization: SciBar-MRD matched sample)

Working on understanding muon distribution

Summary

- Neutrino flux measurements using CC interaction.
 - Essential for any exclusive cross-section measurements and Short base-line neutrino oscillation search with MiniBooNE.
- High purity CC-sample by requiring SciBar-MRD matching.

Working on

- Understanding muon distribution.
- Neutrino spectrum fitting.

Backup Slides

Muon θ_X and θ_Y

 Muon angle discrepancy can seen in both X and Y directions.

Acceptance (theta, Pmu)

Acceptance (Enu, Q2)

Angle, Pmu resolution

Enu, Q2 resolution

SCIBOONE Angular discrepancy for MRD event

